
SCRUM GUIDE

This guide explains how to use Scrum to build products. In doing so, it will describe how the
framework and its artifacts, time-boxes, roles and rules work together. Scrum does not include
techniques and processes for building products; however, it will point out the efficacy and flaws
of these techniques and processes.

Scrum is a framework for developing complex products and systems. It is grounded in empirical
process control theory*. Scrum employs an iterative, incremental approach to optimize
predictability and control risk. Within each iteration, Scrum employs self-organizing, cross-
functional Teams to optimize flexibility and productivity.

The heart of Scrum is a Sprint. A Sprint is one iteration of a month or less that is of consistent
length throughout a development effort. All Sprints use the same Scrum framework, and all
Sprints end with an increment of the end product that is potentially releasable. The increment is
a complete slice, or piece, of the finished product or system that is developed by the end of an
iteration, or Sprint. One Sprint starts immediately after the prior Sprint ends.

Scrum employs time-boxes to create regularity. The time-boxes within Scrum are :

the Sprint Planning Meeting, the Sprint, the Daily Scrum, the Sprint Review,
and the Sprint Retrospective.

Scrum employs self-organizing, cross-functional Scrum Teams
to do the work. Each Scrum Team has three roles where
accountability and responsibility lie. The ScrumMaster is
responsible for ensuring the process is understood and followed.
The Product Owner is responsible for maximizing the value
of the work done. The Team does the work. The Team consists
of developers with all the skills to turn the Product Owner’s
requests into the potentially shippable increment each Sprint.
The Team is usually seven plus or minus two members.

The Scrum framework consists of these time-boxes, Teams (with
roles), and artifacts glued together by Rules. One rule is that only
the people committed to turning the Product Backlog into an
increment, namely the Team, talks during a Daily Scrum.

* “Agile Software Development with Scrum,”
 Ken Schwaber, Microsoft Press, 2004

SCRUM GUIDE 02

SCRUM GUIDE

TIP: If there are fewer
people on the team, the
team may reach skill
constraints during parts of
the Sprint. If there are more
members, the team may
be overwhelmed with too
many people to collaborate
and to keep informed. In
our experience, however,
teams do range outside this
recommended size of seven
plus or minus two.

SCRUM GUIDE 03

Rules bind the roles, time-boxes and meetings. These rules are
implicit throughout this document as the roles, time-boxes and
meetings are described. When there are suggested approaches,
or TIPS, on how to proceed, these are in separate TIP boxes.

Scrum has been used to develop complex products since the
early 1990s. Many best practices have been uncovered for
developing complex products within the Scrum framework. In
tandem with this guide, the books “Agile Project Management
with Scrum” (Schwaber, Microsoft Press, 2004) and “The Enterprise
and Scrum” (Schwaber, Microsoft Press, 2007) contain many tips
about managing projects and scaling Scrum.

Scrum Theory 						
Scrum is a framework for developing complex products and
systems that is grounded in empirical process control theory.*
Empirical process control has three legs underlying all of its
implementations: transparency, inspection, and adaptation.
Transparency means that aspects of the process must be visible
to and understood by those controlling the process.

The second leg is inspection. The various aspects of the process must be inspected frequently
enough so that unacceptable variances in the process can be detected. Two key factors of
inspection are the skill and diligence of the people inspecting the work and the frequency with
which they inspect the process. It must be taken into consideration that all processes are changed
by the act of inspection. A conundrum occurs when the required frequency of inspection exceeds
the team’s tolerance to inspection of the process. Fortunately, this doesn’t seem to be true in
software development.

The third leg of empirical process control is adaptation. If the inspector determines from the
inspection that one or more aspects of the process are outside acceptable limits, and that
the resulting product will be unacceptable, the inspector must adjust the process or the
material being processed. The adjustment must be made as quickly as possible to minimize
further deviation.

There are three inspect and adapt points in Scrum. The Sprint Review and Planning meetings are
used to inspect progress toward the Release Goal, and to make adaptations that optimize the
value of the next Sprint. The Daily Scrum meeting is used to inspect progress toward the Sprint
goal, and to make adaptations that optimize the value of the next workday. The Retrospective
meeting is used to adapt the process and interactions of the previous Sprint, and to make
adaptations that make the next Sprint more productive, fulfilling, and enjoyable.

TIP: When rules are not
stated, the users of Scrum
are expected to figure out
what to do. Don’t try to
figure out a perfect solution,
because the problem
usually changes quickly.
Instead, try something
and see how it works.
The inspect and adapt
mechanisms of Scrum’s
empirical nature will
guide you.

* “Process Dynamics, Modeling, and Control,” Babatunde A. Ogunnaike and W. Harmon Ray,
 Oxford University Press, 1994

SCRUM GUIDE 04

The Roles 	
The Scrum Team 						
The Scrum Team consists of the ScrumMaster, the Product
Owner, and the Team (of developers). Scrum team members are
called “pigs”. Everyone else is a “chicken.” Chickens cannot tell
“pigs” how to do their work. Chickens and pigs come from the
following story:

“A chicken and a pig are together when the
chicken says, “Let’s start a restaurant!” The pig
thinks it over and says, “What would we call this
restaurant?” The chicken says, “Ham n’ Eggs!”
The pig says, “No thanks, you’d only be involved
but for me it would be a real commitment!”

The ScrumMaster 		
The ScrumMaster is responsible for ensuring that Scrum values,
practices and rules are enacted and enforced. The ScrumMaster
is the driving force behind all of the Scrum and helps the Scrum
Team and the organization adopt and use Scrum to produce a
higher quality product. The ScrumMaster is not the manager
but leads by coaching, teaching and supporting the team.
The ScrumMaster helps the Team understand and use self-
management and cross-functionality.

Product Owner 						
The Product Owner is the one and only person responsible
for managing and controlling the Product Backlog. This is the
person who is officially responsible for the value of the work
done. This person maintains the Product Backlog and ensures
that it is visible to everyone. Everyone knows what items have
the highest priority, so everyone knows the order in which the
items will be addressed.

The Product Owner is one person, not a committee. Committees
may exist that advise or influence this person, but any person
or body of people wanting an item’s priority changed must
convince the Product Owner. Organizations have many ways

TIP: The ScrumMaster may
be part of the Team such
as a developer performing
Sprint tasks. However,
if this is the case, there
may be conflict between
removing impediments
and performing tasks. The
ScrumMaster is never the
Product Owner.

TIP: For commercial
development, the Product
Owner may be the product
manager. For in-house
development efforts, the
Product Owner could be the
user department manager.

TIP: The ScrumMaster
works with the customers
and management to
identify and instantiate
a Product Owner. The
ScrumMaster teaches the
Product Owner how to do
his or her job, in order to
optimize the value of the
use Scrum. If they don’t,
the ScrumMaster is held
accountable.

SCRUM GUIDE 05

of setting priorities and requirements. These practices will be
influenced by Scrum across time, particularly through the meeting
that reviews product increments (Sprint Review). 	

For the Product Owner to succeed, everyone in the organization
has to respect his or her decisions. No one is allowed to tell the
Teams to work from a different set of priorities, and Teams aren’t
allowed to listen to anyone who says otherwise. The Product
Owner’s decisions are visible in the content and prioritization of
the Product Backlog. This visibility requires the Product Owner to
do his or her best, and makes the role of Product Owner both a
demanding and a rewarding one.

The Team							
Teams are the developers who turn Product Backlog into
increments of potentially shippable functionality every Sprint.
Teams are responsible for organizing themselves to do the work.
Teams are cross-functional, having all the skills needed to create
an increment. There are no titles for team members. Teams self-
organize to turn the requirements and technology into product
functionality. Everyone chips in and does his or her best, doing or
learning how to do what is needed. No job descriptions. No titles,
no exceptions. For example, people who refuse to code because
they are systems architects or designers could not be part of a
Scrum Team.

Teams are cross functional. A Scrum Team should include people
with all of the skills necessary to meet the Sprint goal. Scrum
eschews vertical teams of analysts, designers, quality control, and
coding engineers. A Scrum Team self-organizes so that everyone
contributes to the outcome. Each Scrum Team member applies
his or her expertise to all of the problems. For example, the
resultant synergy from a tester helping a designer construct
code improves code quality and raises productivity.

The size of the Team optimizes at seven people, plus or minus
two. The Product Owner and ScrumMaster roles are not included
in this count unless they are also pigs.

Team composition may change at the end of a Sprint. Every time
Team membership is changed, the productivity gained from self-
organization is diminished. Care should be taken when changing
Team composition.

TIP: The Product Owner
can also serve as a
Team member doing
development work. This
additional responsibility
may cut into the Product
Owner’s ability to work with
stakeholders. However, the
Product Owner can never
be the ScrumMaster.

TIP: Developers usually
have specialized skills, such
as programming, quality,
analysis, architecture, user
interface design, and data
base design. However,
the shared skills of how to
address a requirement and
turn it into a usable product
tend to be greater than the
unique skills.

TIP: Teams as small
as three can work, but
the small size limits the
amount of interaction
that can occur and
reduces productivity gains.
Teams larger than nine
members don’t work out
well: Team productivity
decreases; Scrum’s control
mechanisms become
cumbersome and the
Daily Scrum meeting
may become too difficult.
Most important, large
Teams generate too much
complexity for an empirical
process.

SCRUM GUIDE 06

* “User Stories Applied: For Agile Software Development,” Mike Cohn, Addison-Wesley, 2004
† “Writing Effective Use Cases,” Alistair Cockburn, Addison-Wesley, 2000

The Product Backlog						
The requirements for product being developed by the Scrum
team(s) are listed in the Product Backlog. The Product Owner is
responsible for the Product Backlog and its contents, availability
and prioritization. Product Backlog is never complete, and the
initial cut at developing it only lays out the initially known and
best understood requirements.

 The Product Backlog evolves as the product and the environment
in which it will be used evolves. Backlog is dynamic in that it
constantly changes to identify what the product needs to be
appropriate, competitive and useful. As long as a product exists,
Product Backlog also exists.

The Product Backlog is the master list of all functionality desired
in the product. Product Backlog items have the attributes of a
description, priority and estimate. Priority is driven by risk, value
and necessity (non-functional requirements). There are many
techniques for assessing these attributes.

The Product Backlog*† includes everything necessary to develop
and launch a successful product. It is a list of all features, functions,
technologies, enhancements, and bug fixes that constitute the
changes that will be made to the product for future releases.

Product Backlog is sorted in order of priority. Top priority Product
Backlog drives immediate development activities. The higher the
priority, the more urgent it is, the more it has been thought about,
and the more consensus there is regarding its value. Higher
priority backlog is clearer and has more detailed information
than lower priority backlog. Better estimates are made based on
the greater clarity and increased detail. The lower the priority, the
less the detail.

As a product is used, as its value increases, and as the marketplace
provides feedback, the product’s backlog emerges into a larger
and more exhaustive list. Requirements never stop changing.

Product Backlog is an inventory. Changes in business requirements, marketplace attributes,
technology understandings and staffing cause changes in the Product Backlog. To minimize
rework, only the highest priority items need to be detailed or fine-grained. The Product Backlog
items that will occupy the attention of the Scrum Team for the upcoming several Sprints are fine
grained: decomposed so that any one item can be done within the duration of the Sprint.

TIP: Product Backlog items
are usually stated as User
Stories. Use Cases may be
used for very precise needs,
such as life or mission-
critical applications.

TIP: Scrum Teams often
spend 10% of each Sprint
grooming the product
backlog to meet the above
definition of the Product
Backlog. When groomed to
this level of granularity, the
Product Backlog items at the
top of the Product Backlog
(highest priority, greatest
value) are decomposed so
they fit within one Sprint.
They have been analyzed
and thought through during
the grooming process. When
the Sprint Planning meeting
occurs, these top priority
Product Backlog items are
well understood and easily
selected.

SCRUM GUIDE 07

While multiple Scrum Teams can work together on the same
product, only one Product Backlog is used. The Teams can then
group by feature set, technology or architecture as a way to
organize work by the Scrum Team.

Release Planning 	
The purpose of release planning is to establish a plan and
goals that the Scrum Team and the rest of the organization
can mutually understand and communicate. Release planning
answers the question of how we can turn the vision into a
winning product in best possible way, and meet or exceed the
desired customer satisfaction and Return on Investment. The
release plan establishes the goal of the release, the highest priority Product Backlog, the major
risks, and the overall features and functionality that the release will contain. It also establishes a
probable delivery date and cost if nothing changes. The organization can then inspect progress
and make adaptations on a Sprint-by-Sprint basis.

Products are built iteratively using Scrum, wherein each Sprint creates an increment of the
product, starting with the most valuable and riskiest. More and more Sprints create additional
increments of the product. Each increment is a potentially shippable slice of the entire product.
When enough increments have been created for the Product to be of value, of use to its investors,
the product is released.

Most organizations already have a release planning process. Most planning is done at the
beginning of the release. Then the plan is followed. In Scrum release planning, an overall goal and
probable outcomes are depicted. This release planning usually requires no more than 15-20% of
the time an organization consumes to build a traditional release plan. However, a Scrum release
performs just-in-time planning every Sprint Review and Sprint Planning meeting, as well as
daily just-in-time planning at every Daily Scrum meeting. Overall, Scrum release efforts probably
consume slightly more effort than traditional release planning efforts.

Release planning requires estimating and prioritizing the Product
Backlog for the Release. There are many techniques for doing so
that lie outside the purview of Scrum and should be investigated
and used appropriately.*

The Sprint							
A Sprint is one iteration. Sprints are time-boxed. Sprints are
protected by the ScrumMaster from any changes that would
affect the Sprint Goal. The Team composition is constant
throughout the Sprint. The quality of the increment remains
constant throughout the Sprint.

A Sprint is similar to a project, consisting of planning, work

TIP: Acceptance tests
are often used as another
Product Backlog item
attribute. They can
supplant more detailed text
descriptions with a testable
description of what the
Product Backlog item must
do when completed.

TIP: If the Team senses that
it has overcommitted, it meets
with the Product Owner to
remove or reduce the scope of
Product Backlog selected for
the Sprint. If the Team senses
that it may have extra time,
it can work with the Product
Owner to select additional
Product Backlog.

* “Agile Estimating and Planning,” Mike Cohn, Prentice Hall, 2005

SCRUM GUIDE 08

and a deliverable. A Planning Horizon is the period covered
by a particular plan. In general, its length is dictated by the
degree of uncertainty in the external environment the higher
the uncertainty, the shorter the planning horizon. In complex
product development, the planning horizon is relatively short.
The length of the Sprint is determined by the Planning Horizon.
However, no Sprint is longer than one month, and all Sprints
used to develop a product are of the same length. The consistent
length of all Sprints creates the heartbeat of the overall work on
the product.

Sprints contain and consist of the Sprint Planning meeting,
the development work, the Sprint Review, and the Sprint
Retrospective. Sprints occur one after another, with no time in between Sprints.

A project is used to accomplish something. In software development, it is used to build a product
or system. Every project consists of a definition of what is to be built, a plan to build it, the work
done according to the plan and the resultant product.

Every project has a horizon that is the time frame for which the plan is good. If the horizon is too
long, the definition may have changed because too many variables may have entered in, and the
risk may be too great.

Scrum is a framework for a project whose horizon is no more than one month long, where there
is enough complexity that a longer horizon would be too risky. The predictability of the project
has to be controlled at least each month, and the risk that the project may go out of control or
become unpredictable is contained at least each month.

Sprint Planning Meeting									
The Sprint Planning Meeting is when the iteration is planned. It is time-boxed to eight hours
for a one month Sprint. For shorter Sprints, allocate approximately 5% of the total Sprint length
to this meeting and consists of two parts. The first part, a four-hour time box, is when what will
be done in the Sprint is determined. The second part, another four-hour time box, is when the
Team figures out how it is going to build this functionality into a
product increment during the Sprint.

Sprint Planning Meeting Part 1			
Sprint Planning Meeting (What) – In the first part, the Product
Owner presents the top priority Product Backlog to the Team.
They mutually decide what functionality to develop during the
next Sprint. Input at this meeting includes the Product Backlog,
the latest increment of product, the capacity of the Team and

TIP: When a Team begins
Scrum, two-week Sprints
allow it to learn without
wallowing in uncertainty.
Sprints of this length can
be synchronized with other
Teams by adding two
increments together.

TIP: Scrum teams often
merge Part 1 and Part 2
together. However, the time-
box must be adhered to.
Otherwise planning activities
can consume the Sprint.

SCRUM GUIDE 09

past performance of the Team. The amount of backlog the Team selects is solely up to the Team.
Only the Team can assess what it can accomplish over the upcoming Sprint.

Sprint Goal												
Having selected the Product Backlog, a Sprint Goal is crafted. The Sprint Goal is an objective that
will be met through the implementation of the Product Backlog. This is a statement that provides
guidance to the Team on why it is building the increment. The Sprint Goal is a subset of the
release goal.

The reason for having a Sprint Goal is to give the Team some wiggle room regarding the
functionality. For example, the goal for the above Sprint could be: “Automate the client account
modification functionality through a secure, recoverable transaction middleware capability.”As
the Team works, it keeps this goal in mind. In order to satisfy the goal, it implements the
functionality and technology. If the work turns out to be harder than the Team had expected, the
Team collaborates with the Product Owner and only partially implements the functionality.

Sprint Planning Meeting Part 2								
Sprint Planning Meeting (How) - During the second four hours of the Sprint Planning Meeting, the
Team figures out how it will turn the Product Backlog selected during Sprint Planning Meeting
(What) into a “done” increment. The team usually starts by designing the work. While designing,
the Team identifies tasks. These tasks are the detailed pieces of work necessary to convert the
Product Backlog into working software. Tasks should be decomposed so they can be done in less
than one day. This task list is called the Sprint Backlog. The Team
self-organizes to assign and undertake the work in the Sprint
Backlog, either during the Sprint Planning meeting or just-in-
time during the Sprint.

The Product Owner is present during this meeting to clarify
the Product Backlog and to help make trade-offs. If the Team
determines that it has too much or too little work, it may
renegotiate the Product Backlog with the Product Owner. The
Team may also invite other people to attend in order to provide
technical or domain advice. A new Team often first realizes that
it will either sink or swim as a Team, rather than individually,
in this meeting. The Team realizes that they must rely on each
other. As they realize this, they start to self-organize to take on
the characteristics and behavior of a real Team.

Increment of Potentially Shippable Product Functionality				
Scrum requires Teams to build an increment of product functionality every Sprint. This increment
must be potentially shippable, because a Product Owner may choose to immediately implement
the functionality. To do so, the increment must be a complete slice of the product. It must be
“done.” Each increment should be additive to all prior increments and thoroughly tested, ensuring
that all increments work together.

TIP: Usually, only 60-70%
of the total Sprint Backlog
will be devised in the Sprint
Planning meeting. The rest
are stubbed out for later
detailing, or given large
estimates that will
be decomposed later in
the Sprint.

SCRUM GUIDE 10

Done	 	
In product development, asserting that functionality is “done” might lead someone to assume
that it is at least cleanly coded, refactored, unit tested, built and acceptance tested. Someone else
might assume only that the code has been built. If everyone doesn’t know what the definition of
“done” is, the other two legs of empirical process control don’t work. When someone describes
something as “done”, everyone must understand what “done” means.

“Done” defines what the Team means when they commit to
“doing” a Product Backlog item in a Sprint. Some products do
not contain documentation, so the definition of “done” does
not include documentation. A completely “done” increment
includes all of the analysis, design, refactoring, programming,
documentation and testing for the increment and all Product
Backlog items in the increment. Testing includes unit, system,
user and regression testing, as well as non-functional tests
such as performance, stability, security and integration. “Done”
includes any internationalization. Some Teams aren’t yet able
to include everything required for implementation in their
definition of done. This must be clear to the Product Owner. This
remaining work will have to be completed before the product
can be implemented and used.

TIP: “Undone” work is
often accumulated in a
Product Backlog item
called “Undone Work” or
“Implementation Work.”
As this work accumulates,
the Product Backlog
burndown remains more
accurate than if it weren’t
accumulated.

TIP: Some organizations are incapable of building a complete increment within one Sprint.
They may not yet have the automated testing infrastructure to complete all of the testing. In this
case, two categories are created for each increment: the “done” work and the “undone” work.
The “undone” work is the portion of each increment that will have to be completed at a later
time. The Product Owner knows exactly what he or she is inspecting at the end of the Sprint
because the increment meets the definition of “done” and the Product Owner understands
the definition. “Undone” work is added to a Product Backlog item named “undone work” so
it accumulates and correctly reflects on the Release Burndown graph. This technique creates
transparency in progress toward a release. The inspect and adapt in the Sprint Review is as
accurate as this transparency.

For instance, if a Team is not able to do performance, regression, stability, security and
integration testing for each Product Backlog item, the proportion of this undone work to the
work that can be done (analysis, design, refactoring, programming, documentation, unit and
user testing) is calculated. Let’s say that this proportion is 6 pieces of “done” and 4 pieces of
“undone.” If the Team finishes a Product Backlog item of 6 units of work (the Team is estimating
based on what it knows how to “do”), 4 units are added to the “undone work” Product Backlog
item when they are finished.

Sprint-by-Sprint, the “undone” work of each increment is accumulated and must be addressed
prior to releasing the product. This work is accumulated linearly although it actually has some
sort of exponential accumulation that is dependent on each organization’s characteristics.
Release Sprints are added to the end of any release to complete this “undone” work. The number
of Sprints is unpredictable to the degree that the accumulation of “undone” work is not linear.

SCRUM GUIDE 11

Sprint Backlog and Sprint Burndown							
The Sprint Backlog consists of the tasks the Team performs in order to turn Product Backlog items
into “done” increments. Many are developed during the Sprint Planning Meeting (How). It is all
of the work the Team identifies as necessary to meet the Sprint goal. Sprint Backlog items must
be decomposed. The decomposition is complete enough so that changes in progress can be
understood in the Daily Scrum.

The Team modifies Sprint Backlog throughout the Sprint, as well as Sprint Backlog emerging
during the Sprint. As they get into individual tasks, they may find out that more or fewer tasks are
needed, or that a given task will take more or less time than had been expected. As new work is
required, the Team adds it to the Sprint Backlog. As tasks are worked on or completed, the hours
of estimated remaining work for each task is updated. When tasks are deemed unnecessary, they
are removed. Only the Team can change its Sprint Backlog during a Sprint. Only the Team can
change the contents or the estimates. The Sprint Backlog is a highly visible, real-time picture of
the work that the Team plans to accomplish during the Sprint, and it belongs solely to the Team.

Sprint Backlog Burndown is a graph of the amount of Sprint
Backlog work remaining in a Sprint across time in the Sprint. To
create this graph, determine how much work remains by summing
the backlog estimates every day of the Sprint. The amount of
work remaining for a Sprint is the sum of the work remaining
for all of Sprint Backlog. Keep track of these sums by day and use
them to create a graph that shows the work remaining over time.
By drawing a line through the points on the graph, the Team can
manage their progress in completing a Sprint’s work. Duration is
not considered in Scrum. Work remaining and date are the only
variables of interest.

Daily Scrum							
Each Scrum Team meets daily for a 15-minute status meeting called the Daily Scrum. The Daily
Scrum is at the same time and same place throughout the Sprints. During the meeting, each Team
member explains:

1.	 What he or she has accomplished since the last meeting;
2.	 What he or she is going to do before the next meeting;
3.	 What obstacles are in his or her way. 							
 	

Daily Scrums improve communications, eliminate other meetings, identify and remove
impediments to development, highlight and promote quick decision-making, and improve
everyone’s level of project knowledge.

The ScrumMaster ensures the Team has the meeting. The Team is responsible for conducting
the Daily Scrum. The ScrumMaster teaches the Team to keep the Daily Scrum short by enforcing
the rules and making sure that people speak briefly. The ScrumMaster also enforces the rule that
chickens are not allowed to talk or in anyway interfere with the Daily Scrum.

TIP: Whenever possible,
hand draw the burndown
chart on a big sheet of
paper displayed in the
team’s work area. Teams
are more likely to see a big,
visible chart than they are
to look at Sprint burndown
chart in Excel or a tool.

SCRUM GUIDE 12

The Daily Scrum is not a status meeting. It is not for everyone, only the people transforming the
Product Backlog items into an increment (the Team). The Team has committed to a Sprint Goal,
and to these Product Backlog items. The Daily Scrum is an inspection of the progress toward
that Sprint Goal (the three questions). Follow-on meetings usually occur to make adaptations
to the upcoming work in the Sprint. The intent is to optimize the probability that the Team will
meet their Goal. This is a key inspect and adapt meeting in the Scrum
empirical process.

Abnormal termination of Sprints
Sprints can be cancelled before the Sprint time box is over. Only the Product Owner has
the authority to cancel the Sprint, although he or she may do so under influence from the
stakeholders, the Team or the ScrumMaster.

Under what kind of circumstances might a Sprint need to be cancelled? Management may
need to cancel a Sprint if the Sprint Goal becomes obsolete. A company as a whole may change
direction. Market conditions or technological requirements might change. Management can
simply change its mind. In general, a Sprint should be cancelled if it no longer makes sense
given the circumstances. However, because of the short duration of Sprints, it rarely makes
sense to do so.

When a Sprint is cancelled any completed and “done” Product Backlog items are reviewed. They
are accepted if they represent a potentially shippable increment. All other Product Backlog
items are put back on the Product Backlog with their initial estimates. Any work done on them is
assumed to be lost.

Sprint terminations consume resources, since everyone has to regroup in another Sprint
planning meeting to start another Sprint. Usually, the first question that is asked when a Sprint
is terminated is, “Who is responsible for this meeting occurring early?” Because people don’t
want to be named as the answer to this question, very few Sprints end up being terminated.

Sprint Review							
At the end of the Sprint, a Sprint Review meeting is held. This
is a four-hour time-boxed meeting for one-month Sprints. For
Sprints of lesser duration, this meeting must not consume more
than 5% of the total Sprint.

During the Sprint Review, the Scrum Team and stakeholders
collaborate about what was just done. Based on that and
changes to the Product Backlog during the Sprint, they
collaborate about what are the next things that could be
done. This is an informal meeting, with the presentation of the
functionality intended to foster collaboration about what to do next.

The meeting includes at least the following elements. The Product Owner identifies what has
been done and what hasn’t been done. The Team discusses what went well during the

TIP: When a Sprint is
terminated, much of the
work a Team has done
will be lost. This is usually
traumatic to the Team.

Sprint and what problems they ran into, and how they solved these
problems. The Team then demonstrates the work that is done
and answers questions. The Product Owner then discusses the
Product Backlog as it stands. He or she projects likely completion
dates with various velocity assumptions. The entire group then
collaborates about what they have seen and what this means
regarding what to do next. The Sprint Review provides valuable
input to subsequent Sprint Planning meeting.

Release Burndown 						
The Release Burndown graph records the sum of remaining
Product Backlog estimated effort across time. The estimated effort
is in whatever unit of work the Scrum Team and organization have
decided upon. The units of time are usually Sprints.

Product Backlog item estimates are calculated initially during
Release Planning, and thereafter as they are created. During
Product Backlog grooming they are reviewed and revised.
However, they can be updated at any time. The Team is responsible
for all estimates. The Product Owner may influence the Team by
helping understand and select trade-offs, but the final estimate is
made by the Team.

The Product Owner keeps an updated Product Backlog list and
Release Burndown posted at all times. A trend line can be drawn
based on the change in remaining work.

Sprint Retrospective						
After the Sprint Review and prior to the next Sprint Planning meeting, the Scrum Team has a Sprint
Retrospective meeting. At this three hour, time-boxed meeting the ScrumMaster encourages the
Team to revise, within the Scrum process framework and practices, their development process to
make it more effective and enjoyable for the next Sprint. There are many techniques for Retrospectives
documented in books.

The purpose of the Retrospective is to inspect how the last Sprint went in regards to people,
relationships, process and tools. The inspection should identify and prioritize the major items that
went well, and those items that, if done differently, could make things even better. These include
team composition, meeting arrangements, tools, definition of “done,” methods of communication,
and processes for turning Product Backlog items into something “done.” By the end of the Sprint
Retrospective, the Scrum Team should have identified actionable improvement measures that they
implement in the next Sprint. These changes become the adaptation to the empirical inspection.

Multiple Scrum Teams, Scaling Scrum							
Scrum does not change when many teams use it. Techniques for using Scrum in a scaled, multi-team
environment can be found in recent books†.

SCRUM GUIDE 13

TIP: The trend line may be
unreliable for the first two
to three Sprints of a release
unless the Scrum Teams
have worked together
before, know the product
well, and understand the
underlying technology.

TIP: In some organizations,
more work is added than
is done. This may create
a trend line that is flat or
even slopes upwards. To
compensate for this and
retain transparency, a new
floor may be created when
work is added or subtracted.
The floor should add or
remove only significant
changes and should be well
documented.

* Some helpful techniques for conducting a Scrum Retrospective are contained in “Agile Retrospectives: Making
 Good Teams Great,” Esther Derby and Diana Larsen, Pragmatic Bookshelf, 2006.

† “The Enterprise and Scrum,” Ken Schwaber, Microsoft Press, 2007.

